Feynman Becomes a Mechanical Engineer

Near the end of the summer I was given my first real design job: a machine that would make a continuous curve out of a set of points—one point coming in every fifteen seconds—from a new invention developed in England for tracking airplanes, called "radar." It was the first time I had ever done any mechanical designing, so I was a little bit frightened.

I went over to one of the other guys and said, "You're a mechanical engineer; I don't know how to do any mechanical engineering, and I just got this job."

"There's nothin' to it," he said. "Look, I'll show you. There's two rules you need to know to design these machines. First, the friction in every bearing is so-and-so much, and in every gear junction, so-and-so much. From that, you can figure out how much force you need to drive the thing. Second, when you have a gear ratio, say 2 to 1, and you are wondering whether you should make it 10 to 5 or 24 to 12 or 48 to 24, here's how to decide: You look in the Boston Gear Catalogue, and select those gears that are in the middle of the list. The ones at the high end have so many teeth they're hard to make. If they could make gears with even finer teeth, they'd have made the list go even higher. The gears at the low end of the list have so few teeth they break easy. So the best design uses gears from the middle of the list."

I had a lot of fun designing that machine. By simply selecting the gears from the middle of the list and adding up the little torques with the two numbers he gave me, I could be a mechanical engineer!